organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Cyclohexylmethyl-2-cyclohexylsulfanyl-5-isopropylpyrimidin-4(3H)-one

Chun-Sheng Zhang,^a Da-Xiong Li,^a De-Hua Zhang,^a Yan-Ping He^{b*} and Cong Li^b

^aSchool of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China, and ^bSchool of Chemical Science and Technology, Kev Laboratory of Medicinal Chemistry for Natural Resources, (Ministry of Education), Yunnan University, Kunming 650091, People's Republic of China Correspondence e-mail: yphe@ynu.edu.cn

Received 17 July 2008; accepted 8 August 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.066; wR factor = 0.216; data-to-parameter ratio = 21.4.

The title compound, C₂₀H₃₂N₂OS, was obtained during the course of our investigation on 2-alkylsulfanyl-6-benzyl-3,4dihydropyrimidin-4(3H)-ones (S-DABOs) showing favourable anti-HIV-1 activity. Both cyclohexane rings adopt chair conformations. The angle at the methylene C atom linking the pyrimidine and cyclohexane ring is $113.7 (3)^{\circ}$, which is in the range considered optimal for maximum activity of nonnucleoside reverse transcriptase inhibitors. Intermolecular N-H···O hydrogen bonds link the molecules into dimers and stabilize the crystal structure of the compound. In addition, an intramolecular $C-H \cdots O$ hydrogen bond is observed.

Related literature

For related literature, see: He et al. (2004); Ettorre et al. (1996, 1998); Rao et al. (2007).

Experimental

Crystal data

$C_{20}H_{32}N_2OS$	$\gamma = 63.033 \ (2)^{\circ}$
$M_r = 348.54$	V = 1031.5 (3) Å ³
Triclinic, P1	Z = 2
a = 9.9549 (16) Å	Mo $K\alpha$ radiation
b = 10.9542 (17) Å	$\mu = 0.17 \text{ mm}^{-1}$
c = 12.1054 (19) Å	T = 298 (2) K
$\alpha = 63.250 \ (2)^{\circ}$	$0.19 \times 0.14 \times 0.12 \text{ mm}$
$\beta = 69.195 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 1998)	
$T_{\min} = 0.969, T_{\max} = 0.980$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.065$	219 parameters
$wR(F^2) = 0.216$	H-atom parameters constrained
S = 0.88	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
4697 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

9017 measured reflections 4697 independent reflections

 $R_{\rm int} = 0.046$

2103 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N2-H2\cdots O1^{i}$	0.86	1.91	2.761 (4)	170
C11−H11 <i>C</i> ···O1	0.96	2.53	3.115 (5)	119

Symmetry code: (i) -x, -y, -z + 1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a fund from the National Natural Science Foundation of China (grant No. 30560179).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2273).

References

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Ettorre, A., Mai, A., Artico, M., Massa, S., De Montis, A. & La Colla, P. (1996). Acta Cryst. C52, 2115-2117.

Ettorre, A., Mai, A., Sbardella, G., Artico, M., La Colla, P. & Massa, S. (1998). Z. Kristallogr. New Cryst. Struct. 213, 593-595.

He, Y. P., Chen, F. E., Yu, X. J., Wang, Y. P., de Clercq, E., Balzarini, J. & Pannecouque, C. (2004). Bioorg. Chem. 32, 536-548.

Rao, Z.-K., Zhang, S.-S., He, Y.-P., Zheng, Y.-T. & Li, C. (2007). Acta Cryst. E63 03942

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, o1768 [doi:10.1107/S1600536808025592]

6-Cyclohexylmethyl-2-cyclohexylsulfanyl-5-isopropylpyrimidin-4(3H)-one

C.-S. Zhang, D.-X. Li, D.-H. Zhang, Y.-P. He and C. Li

Comment

As part of our ongoing investigation of S-DABO analogues which are a potent family of non-nucleoside reverse transcriptase inhibitors (NNRTIs), the title compound was synthesized as a novel inhibitor and shows favourable anti-HIV-1 activity.

The molecular structure is shown in Fig. 1. Both cyclohexane rings adopt the lowest energy chair conformation. C13—C14—C5 is 113.7 (3)°, which is in the range considered optimal for maximum activity of NNRTIs, *viz.* 110° – 115° (Ettorre *et al.*, 1996).

A comparision of the crystal structure of the title compound with some reported S-DABOs show that their spatial arrangement is similar (Ettorre *et al.*, 1998; Rao *et al.*, 2007). Although these molecules assume a similar conformation, they show differences in their activities. Thus, futher structural investigations are needed.

Intermolecular N—H···O hydrogen bonds link the molecules into dimers and stabilize the crystal structure of the compound. In addition, an intramolecular C—H···O hydrogen bond is observed.

Experimental

With 2-cyclohexylacetonitrile as the starting material, the title compound was synthesized according to the procedure of He *et al.* (2004). Single crystals were obtained from a mixture of ethyl acetate and petroleum ether by slow evaporation at room temperature.

Refinement

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density; $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were placed in calculated positions with C—H = 0.97–0.98 Å and N—H = 0.86 Å, and refined in riding mode; $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme and 30% probability displacement ellipsoids.

Fig. 2. The crystal packing of title compound showing the intermolecular hydrogen bonding (dashed lines)

6-Cyclohexylmethyl-2-cyclohexylsulfanyl-5-isopropylpyrimidin-4(3H)-one

Crystal data	
C ₂₀ H ₃₂ N ₂ OS	Z = 2
$M_r = 348.54$	$F_{000} = 380$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.122 {\rm Mg m}^{-3}$
<i>a</i> = 9.9549 (16) Å	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
b = 10.9542 (17) Å	Cell parameters from 4697 reflections
c = 12.1054 (19) Å	$\theta = 1.9 - 28.3^{\circ}$
$\alpha = 63.250 \ (2)^{\circ}$	$\mu = 0.17 \text{ mm}^{-1}$
$\beta = 69.195 \ (2)^{\circ}$	T = 298 (2) K
$\gamma = 63.033 \ (2)^{\circ}$	Block, colourless
V = 1031.5 (3) Å ³	$0.19 \times 0.14 \times 0.12 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	4697 independent reflections
Radiation source: fine-focus sealed tube	2103 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 298(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -13 \rightarrow 13$
$T_{\min} = 0.969, \ T_{\max} = 0.980$	$k = -13 \rightarrow 14$
9017 measured reflections	$l = -16 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.065$	H-atom parameters constrained
$wR(F^2) = 0.216$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.3399P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.88	$(\Delta/\sigma)_{\rm max} < 0.001$

4697 reflections

219 parameters

 $\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*, and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.33860 (11)	0.15552 (12)	0.30395 (9)	0.0638 (3)
01	-0.1114 (3)	0.0731 (3)	0.6134 (2)	0.0669 (8)
N1	0.1985 (3)	0.2729 (3)	0.4863 (2)	0.0473 (7)
N2	0.0978 (3)	0.1230 (3)	0.4780 (2)	0.0514 (7)
H2	0.1069	0.0683	0.4405	0.062*
C8	-0.0217 (4)	0.1378 (4)	0.5792 (3)	0.0492 (8)
C7	0.2013 (4)	0.1900 (4)	0.4349 (3)	0.0465 (8)
C13	0.0816 (3)	0.2939 (3)	0.5876 (3)	0.0439 (8)
C9	-0.0283 (4)	0.2320 (4)	0.6356 (3)	0.0492 (8)
C10	-0.1620 (4)	0.2617 (4)	0.7421 (4)	0.0686 (11)
H10	-0.1477	0.3255	0.7702	0.082*
C14	0.0877 (4)	0.3902 (4)	0.6429 (3)	0.0522 (9)
H14A	-0.0149	0.4592	0.6585	0.063*
H14B	0.1521	0.4456	0.5817	0.063*
C6	0.4652 (4)	0.2481 (4)	0.2780 (3)	0.0551 (9)
Н6	0.4021	0.3453	0.2833	0.066*
C15	0.1495 (4)	0.3055 (4)	0.7659 (3)	0.0531 (9)
H15	0.0998	0.2329	0.8188	0.064*
C5	0.5566 (5)	0.2656 (5)	0.1449 (4)	0.0801 (13)
H5A	0.4871	0.3252	0.0857	0.096*
H5B	0.6106	0.1706	0.1356	0.096*
C1	0.5698 (4)	0.1675 (4)	0.3730 (4)	0.0675 (11)
H1A	0.6276	0.0684	0.3734	0.081*
H1B	0.5087	0.1628	0.4566	0.081*
C20	0.3203 (4)	0.2241 (4)	0.7442 (4)	0.0671 (11)
H20A	0.3720	0.2930	0.6876	0.081*
H20B	0.3431	0.1559	0.7039	0.081*
C16	0.1092 (5)	0.4041 (5)	0.8375 (4)	0.0779 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H16A	0.1537	0.4795	0.7857	0.094*
H16B	-0.0014	0.4514	0.8545	0.094*
C18	0.3361 (5)	0.2395 (5)	0.9399 (4)	0.0860 (13)
H18A	0.3673	0.1805	1.0210	0.103*
H18B	0.3898	0.3084	0.8947	0.103*
C2	0.6803 (5)	0.2449 (5)	0.3405 (4)	0.0806 (13)
H2A	0.6225	0.3418	0.3455	0.097*
H2B	0.7477	0.1910	0.4013	0.097*
C4	0.6718 (6)	0.3368 (6)	0.1148 (4)	0.1012 (17)
H4A	0.7343	0.3389	0.0320	0.121*
H4B	0.6168	0.4369	0.1124	0.121*
C17	0.1662 (5)	0.3218 (6)	0.9600 (4)	0.0909 (15)
H17A	0.1430	0.3900	1.0003	0.109*
H17B	0.1131	0.2538	1.0158	0.109*
C19	0.3812 (5)	0.1413 (5)	0.8657 (4)	0.0842 (13)
H19A	0.4922	0.0985	0.8466	0.101*
H19B	0.3415	0.0624	0.9170	0.101*
C3	0.7749 (5)	0.2569 (6)	0.2104 (6)	0.1060 (18)
H3A	0.8383	0.1600	0.2068	0.127*
H3B	0.8420	0.3090	0.1908	0.127*
C12	-0.1652 (6)	0.1229 (6)	0.8561 (4)	0.0948 (15)
H12A	-0.1853	0.0600	0.8335	0.142*
H12B	-0.2446	0.1483	0.9239	0.142*
H12C	-0.0679	0.0732	0.8823	0.142*
C11	-0.3132 (4)	0.3452 (5)	0.6950 (5)	0.0978 (16)
H11A	-0.3070	0.4320	0.6245	0.147*
H11B	-0.3949	0.3714	0.7613	0.147*
H11C	-0.3330	0.2846	0.6694	0.147*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0637 (6)	0.0911 (8)	0.0556 (6)	-0.0395 (6)	0.0099 (4)	-0.0446 (6)
01	0.0614 (16)	0.088 (2)	0.0772 (18)	-0.0426 (15)	0.0112 (13)	-0.0516 (16)
N1	0.0487 (16)	0.0526 (17)	0.0457 (16)	-0.0201 (14)	-0.0045 (12)	-0.0222 (14)
N2	0.0519 (16)	0.0645 (19)	0.0499 (16)	-0.0248 (15)	0.0003 (13)	-0.0329 (15)
C8	0.0451 (19)	0.059 (2)	0.051 (2)	-0.0177 (17)	-0.0052 (15)	-0.0282 (17)
C7	0.0478 (19)	0.052 (2)	0.0429 (18)	-0.0194 (16)	-0.0072 (14)	-0.0181 (16)
C13	0.0449 (18)	0.046 (2)	0.0426 (18)	-0.0123 (15)	-0.0075 (14)	-0.0211 (16)
C9	0.0432 (18)	0.058 (2)	0.053 (2)	-0.0192 (16)	-0.0007 (15)	-0.0295 (17)
C10	0.063 (2)	0.082 (3)	0.080 (3)	-0.037 (2)	0.018 (2)	-0.055 (2)
C14	0.052 (2)	0.053 (2)	0.057 (2)	-0.0199 (17)	-0.0023 (16)	-0.0273 (18)
C6	0.061 (2)	0.054 (2)	0.052 (2)	-0.0245 (18)	0.0040 (17)	-0.0273 (18)
C15	0.060 (2)	0.062 (2)	0.050 (2)	-0.0301 (18)	0.0006 (16)	-0.0299 (18)
C5	0.099 (3)	0.096 (3)	0.058 (2)	-0.060 (3)	0.017 (2)	-0.036 (2)
C1	0.058 (2)	0.069 (3)	0.072 (3)	-0.022 (2)	-0.015 (2)	-0.020 (2)
C20	0.064 (2)	0.076 (3)	0.066 (2)	-0.013 (2)	-0.0122 (19)	-0.040 (2)
C16	0.082 (3)	0.091 (3)	0.080 (3)	-0.021 (2)	-0.011 (2)	-0.060 (3)

C18	0.093 (3)	0.109 (4)	0.074 (3)	-0.038 (3)	-0.018 (2)	-0.043 (3)
C2	0.062 (3)	0.075 (3)	0.113 (4)	-0.023 (2)	-0.024 (3)	-0.035 (3)
C4	0.130 (4)	0.115 (4)	0.079 (3)	-0.089 (4)	0.035 (3)	-0.045 (3)
C17	0.091 (3)	0.128 (4)	0.080 (3)	-0.033 (3)	-0.005 (2)	-0.072 (3)
C19	0.080 (3)	0.094 (3)	0.082 (3)	-0.012 (2)	-0.026 (2)	-0.043 (3)
C3	0.067 (3)	0.101 (4)	0.168 (6)	-0.042 (3)	0.016 (3)	-0.078 (4)
C12	0.112 (4)	0.116 (4)	0.066 (3)	-0.066 (3)	0.029 (3)	-0.048 (3)
C11	0.053 (3)	0.095 (4)	0.133 (4)	-0.021 (2)	0.017 (3)	-0.062 (3)
Geometric pa	rameters (Å, °)					
S1—C7		1.748 (3)	C1-	-H1B	0.	.9700
S1—C6		1.817 (3)	C20	—C19	1.	.513 (5)
O1—C8		1.233 (4)	C20	—H20A	0.	.9700
N1—C7		1.299 (4)	C20	—H20B	0.	.9700
N1-C13		1.381 (4)	C16	—C17	1.	.505 (6)
N2—C7		1.353 (4)	C16	—H16A	0.	.9700
N2—C8		1.383 (4)	C16	—H16B	0.	.9700
N2—H2		0.8600	C18	—C17	1.	.502 (6)
C8—C9		1.441 (4)	C18	—C19	1.	.520 (6)
С13—С9		1.364 (4)	C18	—H18A	0.	.9700
C13—C14		1.512 (4)	C18	—H18B	0.	.9700
C9—C10		1.518 (4)	C2-	—С3	1.	.503 (6)
C10-C11		1.523 (6)	C2-	–H2A	0.	.9700
C10-C12		1.531 (6)	C2-	–H2B	0.	.9700
C10—H10		0.9800	C4	—С3	1.	.509 (7)
C14—C15		1.531 (5)	C4	-H4A	0.	.9700
C14—H14A		0.9700	C4	–H4B	0.	.9700
C14—H14B		0.9700	C17	—H17A	0.	.9700
C6-C1		1.514 (5)	C17	—H17B	0.	.9700
C6—C5		1.516 (5)	C19	—H19A	0.	.9700
С6—Н6		0.9800	C19	—H19B	0.	.9700
C15—C20		1.508 (5)	C3–	-H3A	0.	.9700
C15—C16		1.511 (5)	C3–	-H3B	0.	.9700
С15—Н15		0.9800	C12	—H12A	0.	.9600
C5—C4		1.521 (6)	C12	—H12B	0.	.9600
C5—H5A		0.9700	C12	—H12C	0.	.9600
С5—Н5В		0.9700	C11	—H11A	0.	.9600
C1—C2		1.523 (5)	C11	—H11B	0.	.9600
C1—H1A		0.9700	C11	—H11C	0.	.9600
C7—S1—C6		103.08 (16)	C19	—С20—Н20В	10	09.2
C7—N1—C13	3	117.1 (3)	H20	A—C20—H20B	10	07.9
C7—N2—C8		123.4 (3)	C17		1	12.2 (4)
C7—N2—H2		118.3	C17	—С16—Н16А	10	09.2
C8—N2—H2		118.3	C15	—С16—Н16А	10	09.2
O1-C8-N2		119.8 (3)	C17	—С16—Н16В	10	09.2
01—C8—C9		125.8 (3)	C15	—C16—H16B	10	09.2
N2-C8-C9		114.4 (3)	H16	A—C16—H16B	10	07.9
N1-C7-N2		122.9 (3)	C17		1	11.7 (4)

N1—C7—S1	123.0 (3)	C17—C18—H18A	109.3
N2—C7—S1	114.1 (2)	C19—C18—H18A	109.3
C9—C13—N1	123.6 (3)	C17—C18—H18B	109.3
C9—C13—C14	122.5 (3)	C19—C18—H18B	109.3
N1-C13-C14	113.8 (3)	H18A—C18—H18B	107.9
C13—C9—C8	118.6 (3)	C3—C2—C1	111.1 (4)
C13—C9—C10	123.7 (3)	C3—C2—H2A	109.4
C8—C9—C10	117.7 (3)	C1—C2—H2A	109.4
C9—C10—C11	110.7 (3)	C3—C2—H2B	109.4
C9—C10—C12	112.6 (3)	C1—C2—H2B	109.4
C11—C10—C12	112.1 (3)	H2A—C2—H2B	108.0
С9—С10—Н10	107.0	C3—C4—C5	112.2 (4)
C11—C10—H10	107.0	C3—C4—H4A	109.2
C12—C10—H10	107.0	С5—С4—Н4А	109.2
C13—C14—C15	113.7 (3)	C3—C4—H4B	109.2
C13—C14—H14A	108.8	C5—C4—H4B	109.2
C15—C14—H14A	108.8	H4A—C4—H4B	107.9
C13—C14—H14B	108.8	C18—C17—C16	111.4 (3)
C15—C14—H14B	108.8	С18—С17—Н17А	109.3
H14A—C14—H14B	107.7	С16—С17—Н17А	109.3
C1—C6—C5	111.3 (3)	С18—С17—Н17В	109.3
C1—C6—S1	113.1 (3)	С16—С17—Н17В	109.3
C5—C6—S1	106.7 (2)	H17A—C17—H17B	108.0
С1—С6—Н6	108.5	C20—C19—C18	111.9 (4)
С5—С6—Н6	108.5	С20—С19—Н19А	109.2
S1—C6—H6	108.5	C18—C19—H19A	109.2
C20-C15-C16	110.4 (3)	С20—С19—Н19В	109.2
C20—C15—C14	112.2 (3)	С18—С19—Н19В	109.2
C16—C15—C14	111.6 (3)	H19A—C19—H19B	107.9
C20—C15—H15	107.5	C2—C3—C4	110.2 (4)
C16—C15—H15	107.5	С2—С3—НЗА	109.6
C14—C15—H15	107.5	С4—С3—Н3А	109.6
C6—C5—C4	111.2 (3)	С2—С3—Н3В	109.6
C6—C5—H5A	109.4	C4—C3—H3B	109.6
C4—C5—H5A	109.4	НЗА—СЗ—НЗВ	108.1
C6—C5—H5B	109.4	C10—C12—H12A	109.5
C4—C5—H5B	109.4	C10-C12-H12B	109.5
H5A—C5—H5B	108.0	H12A—C12—H12B	109.5
C6—C1—C2	110.4 (3)	C10-C12-H12C	109.5
C6—C1—H1A	109.6	H12A—C12—H12C	109.5
C2—C1—H1A	109.6	H12B—C12—H12C	109.5
C6—C1—H1B	109.6	C10-C11-H11A	109.5
C2—C1—H1B	109.6	C10—C11—H11B	109.5
H1A—C1—H1B	108.1	H11A—C11—H11B	109.5
C15—C20—C19	112.1 (3)	C10—C11—H11C	109.5
C15—C20—H20A	109.2	H11A—C11—H11C	109.5
С19—С20—Н20А	109.2	H11B—C11—H11C	109.5
C15—C20—H20B	109.2		
C7—N2—C8—O1	-179.8 (3)	C9—C13—C14—C15	75.8 (4)

C7—N2—C8—C9	0.3 (5)	N1-C13-C14-C15	-103.1 (3)
C13—N1—C7—N2	-1.4 (5)	C7—S1—C6—C1	74.8 (3)
C13—N1—C7—S1	178.5 (2)	C7—S1—C6—C5	-162.5 (3)
C8—N2—C7—N1	1.0 (5)	C13—C14—C15—C20	73.0 (4)
C8—N2—C7—S1	-178.9 (2)	C13-C14-C15-C16	-162.6 (3)
C6—S1—C7—N1	4.1 (3)	C1—C6—C5—C4	-53.9 (5)
C6—S1—C7—N2	-176.0 (2)	S1—C6—C5—C4	-177.7 (3)
C7—N1—C13—C9	0.4 (5)	C5—C6—C1—C2	55.9 (4)
C7—N1—C13—C14	179.3 (3)	S1-C6-C1-C2	176.0 (3)
N1—C13—C9—C8	0.9 (5)	C16—C15—C20—C19	54.5 (5)
C14—C13—C9—C8	-177.9 (3)	C14-C15-C20-C19	179.6 (3)
N1—C13—C9—C10	-176.4 (3)	C20-C15-C16-C17	-55.8 (5)
C14—C13—C9—C10	4.8 (5)	C14-C15-C16-C17	178.7 (3)
O1—C8—C9—C13	179.0 (3)	C6—C1—C2—C3	-58.1 (5)
N2-C8-C9-C13	-1.2 (5)	C6—C5—C4—C3	54.0 (5)
O1—C8—C9—C10	-3.6 (5)	C19—C18—C17—C16	-53.6 (5)
N2-C8-C9-C10	176.2 (3)	C15-C16-C17-C18	55.8 (5)
C13—C9—C10—C11	112.6 (4)	C15-C20-C19-C18	-53.5 (5)
C8—C9—C10—C11	-64.7 (4)	C17—C18—C19—C20	52.6 (5)
C13—C9—C10—C12	-121.1 (4)	C1—C2—C3—C4	57.6 (5)
C8—C9—C10—C12	61.7 (5)	C5—C4—C3—C2	-55.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2···O1 ⁱ	0.86	1.91	2.761 (4)	170
C11—H11C…O1	0.96	2.53	3.115 (5)	119
Symmetry codes: (i) $-x$, $-y$, $-z+1$.				

Fig. 2